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Localization via Crowdsourcing

‣ In a crowd, some users know about their locations while 
some don’t. With distance observations between them, 
how to localize each user?
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Localization via Crowdsourcing

‣ Each user sends their prior estimates and distance 
observations to a central server, who returns the most 
likely position for each.
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time t
user i

Prior estimate Z i,t

time t
user j

Prior estimate Z j,t

Upload Z i,t, Dij Upload Z j,t, Dji 

Run inference alg.
Return Z* i,t Return Z* j,t 

‣ What if users would like to keep their locations private?



Privacy-Preserving Localization

‣ In a crowd, some users know about their locations while 
some don’t. With distance observations between them, 
how to localize each user without breaching privacy?
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Privacy-Preserving Localization

‣ In a crowd, some users know about their locations while 
some don’t. With distance observations between them, 
how to localize each user without breaching privacy?
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Particle Representation
‣ User’s Location 

‣ A user’s location is represented by a set of particles   
Zi,t = { z1, …, zR}, Zt = {Z1,t , …,  ZN,t}. 

‣ At time t, the server finds the most likely distribution of 
Zt given Zt-1 and D.
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Z⇤
t = argmax

Zt

P (Zt|Zt�1,D).



First Attempt
‣ To encrypt all particles and run the inference in the 

encrypted domain.
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However, encrypted operations are constrained.



Particle Representation
‣ User’s Location 

‣ A user’s location is represented by a set of particles   
Zi,t = { z1, …, zR}. Each particle is associated with a 
weight { w1, …, wR}. 

‣ For example, if the location estimate is {z1, z2, z3} with 
probabilities {0.6, 0.2, 0.2}, then the location is more 
likely to be z1 than z3.
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‣ Users upload each particle’s weight {E(W1), …, E(WR)} 
and distance observations to others E(D) in encryption. 

‣ Server updates each particle’s weight.
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Particle Representation



Privacy-Preserving Inference
‣ Server computes partial information Ci,r for each particle r 

of each user i ( j is observed by i):
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Privacy-Preserving Inference
‣ With secret key sk, user i updates the weight Wi,r for its 

particle r ( djs is the calculated distance between particle 
s of user j and particle r of user i ):
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Privacy-Preserving 
Localization with 
Crowdsourcing
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Run inference.

time t

Prior Z i,t.

Upload Z i, t, E(w) and E(D).

Decrypt and 
update prior with

 Z* i, t.

Download Ci,t.

Upload Z i, t+1, E(w) and E(D).

time t+1

Prior Z i,t+1.
Download C i, t+1.
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But, with R particles, adversary can still guess correct 
location with Prob.  1/R.



Data Perturbation
‣ Idea: perturb Zi,t = { z1, …, zR} as Yi,t = { y1, …, yR}. 

‣ Perturbation: add Gaussian noise                to Zi,t that 
satisfies location differential privacy.
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N (0,�2)



Privacy Definition
‣ Location Differential Privacy:
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A mechanism M satisfies (✏, �)-di↵erential privacy
i↵ for all z, z0 that are d(z, z0) apart:

Pr[M(z) 2 Y ]  e✏Pr[M(z0) 2 Y ] + �,

and ✏ = ⇢d2(z, z0) + 2
p
⇢ log(1/�)d(z, z0),

where ⇢ is a constant specific to the perturbation
mechanism we adopt.



Interpretation of Privacy Definition
‣ Location Differential Privacy: the projected distributions of 

all the points within the same dotted circle are at most     
apart from each other.  

‣ As the distance between the two locations is smaller,      
is smaller, indicating that it is harder to distinguish the two 
locations, i.e., higher privacy level.
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Privacy Definition
‣ User Differential Privacy
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If we report Z = (z1, ..., zR) as Y = (y1, ..., yR),
then the probability of reporting Y given Z is:

Pr[M(Z) 2 Y] =
Y

i

Pr[M(zi) 2 Y ].

The user enjoys (✏0, �)-di↵erential privacy with

✏0 = ⇢Rd2(Z,Z 0) + 2
p

⇢ log(1/�)Rd2(Z,Z 0).



Perturbed Private Inference
‣ Collecting Y, the server computes the pairwise distances 

between each pair of perturbed particles as:
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d̃(y, y0) =
q
||y � y0||22 � 4�2.
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How can we guarantee the inference result the same 
with the unperturbed case? 



Privacy and Utility Analysis
‣ Utility results:  We proved              is an unbiased 

estimator of               

‣ Privacy guarantee: We proved our perturbation scheme 
satisfies location differential privacy and user differential 
privacy. Compared to previous work, we improve the 
privacy level by        with the same utility level.
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d̃(y, y0)

p
R

d(z, z0)



Performance Evaluation
‣ Overhead
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Performance Evaluation
‣ Simulation results using random way point (RWP) model.
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Performance Evaluation
‣ Comparison experiment and real-world experimental 

results.
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Thank you!
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