
Published as a conference paper at ICLR 2020

INTERPRETABLE COMPLEX-VALUED NEURAL NET-
WORKS FOR PRIVACY PROTECTION

Liyao Xianga, Hao Zhanga, Haotian Mab, Yifan Zhanga, Jie Rena, and Quanshi Zhanga
∗aShanghai Jiao Tong University, bSouth China University of Technology

ABSTRACT

Previous studies have found that an adversary attacker can often infer unintended
input information from intermediate-layer features. We study the possibility of
preventing such adversarial inference, yet without too much accuracy degradation.
We propose a generic method to revise the neural network to boost the challenge of
inferring input attributes from features, while maintaining highly accurate outputs.
In particular, the method transforms real-valued features into complex-valued
ones, in which the input is hidden in a randomized phase of the transformed
features. The knowledge of the phase acts like a key, with which any party
can easily recover the output from the processing result, but without which the
party can neither recover the output nor distinguish the original input. Preliminary
experiments on various datasets and network structures have shown that our method
significantly diminishes the adversary’s ability in inferring about the input while
largely preserves the resulting accuracy.

1 INTRODUCTION

Deep neural networks (DNNs) have shown superb capabilities to process massive volume of data,
and local devices such as mobile phones, medical equipment, Internet of Things (IoT) devices have
become major data entry points in recent years. Although on-device machine learning has exhibited
various advantages, it usually burdens thin devices with overwhelming computational overhead. Yet
offloading data or processed features to a cloud operator would put the individual privacy at risk. For
example, if a user has a virtual assistant at home, it should not worry about its private data being
collected and processed by an untrusted cloud operator. The operator, on the other hand, should not
be able to recover original signals or their interpretation.

However, as shown in the previous literature (Dosovitskiy & Brox (2016); Zeiler & Fergus (2014); Ma-
hendran & Vedaldi (2015); Shokri et al. (2017); Ganju et al. (2018); Melis et al. (2019)), intermediate-
layer features face many privacy threats, where the adversary either reconstructs the input or infers
unintended properties about the input. Hence, on-device processing encounters a dilemma, i.e. while
we expect intermediate-layer features to yield high accuracy, we certainly would not want sensitive
information to be leaked.

Therefore, we propose a novel method which tweaks a conventional neural network into a complex-
valued one, such that intermediate-layer features are released without sacrificing input privacy too
much. More precisely, we turn the original real-valued features into complex-valued ones, rotate
these features by a random angle, and feed them to the cloud for further processing.

We face two significant challenges in the design. First, the tweaked features have to be correctly
handled by the DNN on the cloud. Although network structures vary depending on the input types,
it is desired that the piecewise linearity of features to be preserved, so that the resulting accuracy
does not degrade too much compared with the original features. Second, an adversary attacker who
intercepts the features in the middle should not be able to recover the exact input, nor can it figure out
the correct output. Most importantly, the neural network is supposed to be trained using the original
data without additional human supervision, and is efficient to conduct inference.

∗Quanshi Zhang is the corresponding author with the John Hopcroft Center and MoE Key Lab of Artificial
Intelligence AI Institute, Shanghai Jiao Tong University, China. zqs1022@sjtu.edu.cn

1

zqs1022@sjtu.edu.cn

Published as a conference paper at ICLR 2020

To overcome the first challenge, we tailor operations of DNN to make the succeeding computation at
the cloud invariant to feature rotations, i.e., the DNN can correctly handle the feature and preserve the
rotated angle in the output. For the second issue, we adopt generative adversarial networks (GAN) to
generate synthesized features to hide the original ones. It guarantees k-anonymity such that, when an
adversary tries to recover the original input from the complex-valued features, it would get at least k
different inputs (Please see Appendix B for detailed discussion). Each of the k reconstructed inputs
has equivalent probabilities of being the original input for the attacker. Apart from the GAN part,
the training of the neural network adds little additional computation overhead and requires no extra
denotations.

Contributions of this study can be summarized as follows. We propose to transform conventional
DNNs into complex-valued ones, which hide input information into a randomly chosen phase. Only
the party with the phase information can retrieve the correct output. Without it, any party can neither
recover the input nor the output. Tested on various datasets and DNNs, our method has been shown
to yield only moderate computational overhead and little accuracy degradation, while significantly
diminishes the adversary’s ability of inferring about the input.

2 RELATED WORK

Complex-valued neural networks. Using complex-valued features or parameters in neural networks
has always been an interesting topic. From the computational perspective, Trabelsi et al. (2018)
showed that complex-valued neural networks have a competitive performance with their real-valued
counterparts. By augmenting recurrent neural networks with associative memory based on complex-
valued vectors, Danihelka et al. (2016) achieved faster learning on memorization tasks. Complex-
valued features can contain information in both the phase and the magnitude. An example is that
Reichert & Serre (2013) used the phase to indicate properties of spike timing in cortical information
processing. We take advantage of complex-valued features such that original features can be hidden
in an unknown phase. Also, Yang et al. (2019) shared a similar transformation-based approach as
ours while it performed transformation on inputs rather than features, and it aimed to improve the
adversarial robustness of the model.

Privacy-preserving deep learning. Various privacy-preserving mechanisms have been proposed
using different definitions of privacy: Osia et al. (2017) applied the Siamese architecture to separate the
primary and private information so that the primary information was preserved in the feature. PrivyNet
by Li et al. (2017) was proposed to decide the local DNN structure under the privacy constraint based
on the peak signal-to-noise ratio or the pixel-wise Euclidean distance. Data nullification and random
noise addition were introduced by Wang et al. (2018) to protect private information in the features,
which guaranteed differential privacy.

Cryptographic tools have been used to learn from sensitive data. Zhang et al. (2016) adopted
homomorphic encryption, in particular, BGV encryption, to encrypt the private data and perform
the high-order back-propagation on the encrypted data; Mohassel & Zhang (2017) distributed the
private data among two non-colluding servers who performed the secure two-party computation to
train models on the joint data. Our scheme achieves k-anonymity privacy guarantee such that any
adversary can at best reconstruct a number of synthetic inputs from the transformed features and thus
it cannot distinguish the original input from others.

3 THREAT MODEL AND PRIVACY GUARANTEE

In this section, we briefly introduce the threat model and the privacy guarantee that our scheme aims
to achieve.

Threat model. In our model, a user processes its raw data locally and transmits the neural network
features to the cloud for further processing. An adversary would intercept the transferred features
and perform either feature inversion attacks or property inference attacks on these features to either
reconstruct inputs, or infer unintended information. Typical examples of the former attacks include
feature inversion by Dosovitskiy & Brox (2016), gradient-based visualization by Zeiler & Fergus
(2014); Mahendran & Vedaldi (2015), etc. And the latter ones include membership inference attack

2

Published as a conference paper at ICLR 2020

Rotate

Encoder module
@ local device

Processing module
@ computation center

Decoder module
@ local device

Rotate

Adversarial learning Adversary

g
a

b

exp(−iθ)exp(iθ)

Î

h
d ŷΦI

x

(a) Structure of the complex-valued neural network.

Revised
layers

Adversarial loss

noise γ·ε

Original
network

With
noises

With additional
layers

Complex‐valued
network

(b) Network structures in experiments.

Figure 1: Design overview and network structures under investigation.

by Shokri et al. (2017), passive property inference attack by Ganju et al. (2018) as well as feature
leakage in collaborative learning by Melis et al. (2019).

k-anonymity. We aim to achieve the following privacy guarantee: when an adversary tries to
reconstruct the original input from the transformed features, it can sythesize inputs belonging to k
different prototypes with equivalent likelihoods, and only one of them corresponds to the original
input.

4 APPROACH

4.1 OVERVIEW

To fight against the above threats, we propose to revise the conventional DNN. The new structure is
shown in Fig. 1a, where the entire network is divided into the following three modules.

• Encoder is embedded inside a local device at the user end. The encoder extracts feature
from the input, hides true feature by rotating the features by a randomized angle, and sends
the encoded result to the cloud.
• Processing module is located at the public cloud. This module receives and processes the

encoded features without knowing the rotation. At the end of processing, the cloud returns
the output to the user.
• Decoder resides at the user’s local device. The decoder receives and decodes results sent

from the cloud to obtain the final result.

The three modules are jointly trained. Once trained, the encoder and decoder are placed at the local
device, whereas the processing module resides on the cloud for public use. We will illustrate the
detail of each module in the following section.

4.2 COMPLEX-VALUED NEURAL NETWORKS

Let (I, y) ∈ D denote an input and its label in the training dataset and g be the encoder at the local
device. Given the input I , the intermediate-layer feature is computed as

a = g(I), (1)

but we do not directly submit a to the cloud. Instead, we introduce a fooling counterpart b to construct
a complex-valued feature as follows:

x = exp(iθ)
[
a+ bi

]
, (2)

where θ and b are randomly chosen. b is the fooling counterpart which does not contain any private
information of a, but its magnitude is comparable with a to cause obfuscation. The encoded feature is
then sent to the processing module Φ, which produces the complex-valued feature h = Φ(x). Upon
receiving h, the decoder makes prediction ŷ on I by inverting the complex-valued feature h back:

ŷ = d(<[h · exp(−iθ)]), (3)

where d denotes the decoder module, which can be constructed as either a shallow network or just a
softmax layer. <(·) denotes the operation of picking real parts of complex values.

3

Published as a conference paper at ICLR 2020

Processing Module Φ. The core design of the processing module is to allow the complex-valued
feature h = Φ(x) to be successfully decoded later by the decoder. I.e. if we rotate the complex-
valued feature a + bi by an angle θ, all the features of the following layers are supposed to be
rotated by the same angle. We represent the processing module as cascaded functions of multiple
layers Φ(x) = Φn(Φn−1(· · ·Φ1(x))), where Φj(·) denotes the function of the j-th layer and
fj = Φj(fj−1) represents the output of the j-th layer. Thus the processing module should have the
following property:

Φ(f (θ)) = eiθΦ(f) s.t. f (θ) , eiθf, ∀θ ∈ [0, 2π). (4)

In other words, the function of each intermediate layer in the processing module should satisfy

Φj(f
(θ)
j−1) = eiθΦj(fj−1) s.t. f (θ)

j−1 , eiθfj−1, ∀j ∈ [2, . . . , n], ∀θ ∈ [0, 2π). (5)

to recursively prove Eqn. (4).

Let us consider six most common types of network layers to construct the processing module, i.e. the
convolutional layer, the ReLU layer, the batch-normalization layer, the average/max pooling layer,
the dropout layer, and the skip-connection operation. For the convolutional layer, we remove the bias
term and obtain Conv(f) = w ⊗ f , which satisfies Eqn. (5). Inspired by Trabelsi et al. (2018), we
replace the ReLU with the following non-linear layer:

δ(fijk) =
‖fijk‖

max{‖fijk‖, c}
· fijk (6)

where fijk denotes the neural activation at the location (i, j) in the k-th channel of the feature, and c
is a positive constant.

Likewise, the batch-normalization operation is replaced by

norm(f lijk) =
f lijk√

El[‖f lijk‖2]
, (7)

where f l denotes the complex-valued tensor for the l-th sample in the batch.

For max-pooling layers, we modify the rule such that the feature with the maximum norm in the
region is selected, which ensures that max-pooling does not change the phase of its input.

For the dropout layer, we randomly drops out both the real and imaginary parts of complex-valued
features. Skip connections can be formulated as f + Φ(f), where the inner module Φ(f) recursively
satisfies Eqn. (4).

All above six operations satisfy Eqn. (4). Please see supplementary materials for the proof.

GAN-based Encoder. The objective of the encoder is to hide the real feature a of the input I
in a certain phase θ of the encoded feature x = exp(iθ)

[
a + bi

]
. Let a′ = <[x exp(−iθ′)] =

<[(a+ bi) exp(iθ − iθ′)] = <[(a+ bi) exp(i∆θ)] denote a feature decoded using a random angle
θ′ 6= θ, where ∆θ = θ − θ′. An ideal encoder requires (i) the decoded feature a′ contains sufficient
information to cause obfuscation with the real feature a; (ii) a′ and a follow the same distribution so
that it is hard to distinguish which one is the real one. Hence, we train the encoder g with a range
of ∆θ’s and b’s, and adopt a GAN to distinguish different values of them. Letting D denote the
discriminator, we train the encoder g over the WGAN (Arjovsky et al. (2017)) loss:

min
g

max
D

L(g,D) = EI∼pI
[
D(a)− E∆θ∼U(0,π),b 6=a

[
D(a′)

]]
= EI∼pI

[
D(g(I))− E∆θ∼U(0,π),b 6=g(I)

[
D
(
<[(g(I) + bi)ei∆θ]

)]]
.

(8)

g generates features to fool D. Upon convergence, the distribution of a′ approximates that of a. Note
that the loss is the expectation over uniform-randomly distributed θ ∈ (0, 2π). Ideally, the expectation
in Eqn. (8) should also be taken over all possible ∆θ 6= 0, and thus when an adversary tries to recover
a by randomly rotating an angle, it will generate an infinite number of features following the same
distribution as that of a. Empirically, we pick k − 1 such ∆θ’s uniformly over (0, π) and iterate
through these k − 1 values as negative samples in the adversarial learning. The GAN-based encoder

4

Published as a conference paper at ICLR 2020

is the key to our k-anonymity guarantee such that it ensures the real feature cannot be distinguished
from at least k − 1 synthetic features. Please find the end of Appendix B to see the visualization
effect of our privacy guarantee.

The overall loss of learning is formulated as follows, which contains the adversarial loss in Eqn. (8)
and a loss for the target task:

min
g,Φ,d

max
D

Loss = min
g,Φ,d

[
max
D

L(g,D) + Ltask(ŷ, y)
]
, (9)

where Ltask(ŷ, y) represents the loss for the target task.

Note that to simplify the implementation, we compute b = g(I ′) as the feature of a randomly chosen
sample I ′ 6= I where ideally I ′ has little correlation with I .

In sum, the entire neural network [g,Φ, d] is trained with randomized variables θ and b to minimize
the loss in Eqn. (9). Once trained, the network [g,Φ, d] is fixed and publicly released. At the inference
phase, the encoder secretly selects a fooling counterpart b and a rotation angle θ to encode its real
feature a. The decoder receives the processed result h from the cloud, and make the final prediction
based on Eqn. (3).

4.3 ATTACKS TO COMPLEX-VALUED DNNS

We will materialize the attacks described in the threat model in Sec. 3 and make them specific to our
proposed complex-valued DNNs.

Feature inversion attacks: The adversary performs two types of attacks. In inversion attack 1, the
adversary tries to find out the most likely rotated angle θ̂ to revert the feature x and obtain a∗. An
adversary learns to use a∗ to reconstruct the input Î = dec(a∗). Here we define a∗ = <[x exp(−iθ̂)]
as the most probable feature recovered by the adversary. The adversary, for instance, can build a
new discriminator D′ to obtain θ̂ = maxθD

′(<[x exp(−iθ)]). In inversion attack 2, the adversary
learns to directly reconstruct the targeted input from the features, i.e., Î = dec(x). We show
that our adversarial training strategy boosts the difficulty of learning such a decoder. Let g∗ and
D∗ denote the learned encoder and discriminator, respectively. Based on g∗, let us construct the
following discriminator D̂(a′) = −‖g∗(I) − g∗(dec(a′))‖. The larger D̂(a′) indicates the higher
similarity with the real input. Because D∗ is learned via D∗ = arg maxD L(g∗, D), we have
L(g∗, D∗) ≥ L(g∗, D̂). The adversarial loss in Eqn. (8) provides an upper bound of L(g∗, D̂), and
thus restricts the capability of dec(·).

Property inference attacks: By Ganju et al. (2018), ‘property’ refers to the input attribute, which
can be any sensitive information to protect or any attribute not expected to be released with features.
For example, given a facial image dataset and an age recognition task, the gender attribute is required
to hide in features. By labeling features with properties of the corresponding inputs, the adversary
is able to train classifiers on a dataset consisting all the feature-property pairs. Once trained, the
classifiers can use intermediate-layer features to infer if the input possesses certain properties.

We consider four attacking strategies. Inference attack 1: the adversary uses raw images to train
a classifier to predict hidden properties of the input. At the testing phase, the attacker feeds the
reconstructed result dec(a∗) from inversion attack 1 to the classifier to predict hidden properties.
Inference attack 2: the adversary first rotates x’s by their respective θ̂ to estimate the most likely
feature a∗. The adversary trains and tests the classifier on a∗ to predict hidden properties. Inference
attack 3: the adversary uses the result of inversion attack 1 dec(a∗) to train and test a classifier
to predict hidden properties. Inference attack 4: different from the aforementioned classification
approach, we let the adversary compares a∗ against features of each training example to find its
k-nearest neighbors (k-NNs) in the training set and use them to infer the hidden properties.

If a∗ contains sufficient information to recover some property, aforementioned attackers would learn
the relationship between a∗ (or dec(a∗)) and the hidden property. Otherwise, the model would fail.

5

Published as a conference paper at ICLR 2020

Input Input

Original
AlexNet

AlexNet with
additional layers

AlexNet

AlexNet

Noisy features
γ=0.2

Noisy features
γ=1.0
LeNet

LeNet

)])θi-([xdec(ˆexpRe)])θi-([xdec(ˆexpRe

)(xdec)(xdec

Figure 2: Left: CelebA images reconstructed from different features. From top down: original input,
reconstruction from ‘encoder’ output of the original DNN, dec(a), dec(a∗), dec(x). Right: CIFAR-
10 images reconstructed from different features. From top down: original input, reconstruction from
‘encoder’ output of the noisy DNN, –, dec(a∗), dec(x). Reconstruction has limited resemblance with
the input in the last two rows.

Classification Error Rates (%) Reconstruction Errors
Dataset Original DNN with Complex-Valued Original DNN with Complex-Valued Complex-Valued

DNN additional layers DNN DNN additional layers dec(a∗) dec(x)
ResNet-20-α CIFAR-10 11.56 9.68 10.91 0.0906 0.1225 0.2664 0.2420
ResNet-20-β CIFAR-10 11.99 9.79 12.28 0.0967 0.1210 0.2424 0.2420
ResNet-32-α CIFAR-10 11.13 9.67 10.48 0.0930 0.1171 0.2569 0.2412
ResNet-32-β CIFAR-10 10.91 9.40 11.12 0.0959 0.1189 0.2515 0.2425
ResNet-44-α CIFAR-10 10.67 9.43 11.08 0.0933 0.1109 0.2746 0.2419
ResNet-44-β CIFAR-10 10.50 10.15 10.51 0.0973 0.1210 0.2511 0.2397
ResNet-56-α CIFAR-10 10.17 9.16 11.53 0.0989 0.1304 0.2804 0.2377
ResNet-56-β CIFAR-10 10.78 9.04 11.28 0.0907 0.1176 0.2585 0.2358
ResNet-110-α CIFAR-10 10.19 9.14 11.97 0.0896 0.1079 0.3081 0.2495
ResNet-110-β CIFAR-10 10.21 9.36 11.85 0.0932 0.1152 0.2582 0.2414

Table 1: Classification error rates and reconstruction errors measured on different variants of ResNet
and CIFAR-10. Additional layers are introduced due to the GAN structure, but are not trained over
adversarial loss. Our results show that the revised DNNs have almost the same utility performance as
the original ones, but with greater reconstruction loss.

5 EXPERIMENTS

We revised a variety of classical DNNs to complex-valued DNNs and tested them on different datasets
to demonstrate the broad applicability of our method. Without loss of generality, tasks include object
classification and face attribute estimation, but do not exclude other tasks on DNNs. We have applied
a total of two inversion attacks and four inference attacks to the complex-valued DNNs for testing the
privacy performance.

5.1 IMPLEMENTATION DETAILS

Complex-valued DNNs: We constructed complex-valued DNNs based on 8 classical DNNs in total,
which included the ResNet-20/32/44/56/110 (He et al. (2016)), the LeNet (LeCun et al. (1998)),
the VGG-16 (Simonyan & Zisserman (2015)), and the AlexNet (Krizhevsky et al. (2012)). As
shown in Fig. 1a, we divided each original DNN into three modules which were referred to as the
encoder/processing module/decoder correspondingly. The structure is given by the top row of Fig. 1b.
The bottom row of Fig. 1b gives the architecture of revised DNNs. Given the original DNNs, the
encoder/processing/decoder modules were divided as follows. For the residual network, we tested
two variants — ResNet-α and ResNet-β — in the α-variant, the output of the layer before the first
16× 16 feature map was fed to the aforementioned GAN, and layers following the first 8× 8 feature
map constituted the decoder. The β-variant was the same with the α-variant except that the decoder
was composed by the last residual block and the layers following it. The processing module of a
residual network was modified such that c = 1 in δ(·) for all non-linear layers.

The encoder of the LeNet consisted of the first convolutional layer and the GAN, whereas its decoder
only contained the softmax layer. All layers before the last 56×56 feature map of VGG-16 comprised
the encoder. The decoder consisted of fully-connected layers and the softmax layer. For the AlexNet,
the output of the first three convolutional layers was fed into GAN, and the decoder contained
fully-connected layers and the softmax layer. In the processing modules of these DNNs, we set
ck = Eij‖x′ijk‖ for neural activations in the k-th channel.

6

Published as a conference paper at ICLR 2020

Classification Error Rates
Dataset Original DNN with Noisy DNN Noisy DNN Noisy DNN Complex-Valued

DNN additional layers γ = 0.2 γ = 0.5 γ = 1.0 DNN
LeNet CIFAR-10 19.78 21.52 24.15 27.53 34.43 17.95
LeNet CIFAR-100 51.45 49.85 56.65 67.66 78.82 49.76
ResNet-56-α CIFAR-100 53.26 44.38 57.24 61.31 74.17 44.37
ResNet-110-α CIFAR-100 50.64 44.93 55.19 61.12 71.31 50.94
VGG-16 CUB-200 56.78 63.47 69.20 99.48 99.48 78.50
AlexNet CelebA 14.17 9.49 – – – 15.94

Reconstruction Errors
Dataset Original DNN with Noisy DNN Noisy DNN Noisy DNN Complex-Valued DNN Complex-Valued DNN

DNN additional layers γ = 0.2 γ = 0.5 γ = 1.0 dec(a∗) dec(x)
LeNet CIFAR-10 0.0769 0.1208 0.0948 0.1076 0.1274 0.2405 0.2353
LeNet CIFAR-100 0.0708 0.1314 0.0950 0.1012 0.1286 0.2700 0.2483
ResNet-56-α CIFAR-100 0.0929 0.1029 0.1461 0.1691 0.2017 0.2593 0.2473
ResNet-110-α CIFAR-100 0.1050 0.1092 0.1483 0.1690 0.2116 0.2602 0.2419
VGG-16 CUB-200 0.1285 0.1202 0.1764 0.0972 0.1990 0.2803 0.2100
AlexNet CelebA 0.0687 0.1068 – – – 0.3272 0.2597

Table 2: Classification error rates and reconstruction errors on a variety of DNNs and datasets. We
compared the results with noisy DNNs with different noise levels. Complex-Valued DNNs have
significantly better accuracy performance and higher reconstruction errors than noisy DNNs over all
noise levels.

Dataset Original w/ additional Noisy DNN Noisy DNN Noisy DNN Complex-Valued DNN Complex-Valued DNN
DNN layers γ = 0.2 γ = 0.5 γ = 1.0 dec(a∗) dec(x)

LeNet CIFAR-10 0.16 0.12 0.20 0.20 0.24 0.82 0.92
LeNet CIFAR-100 0.16 0.14 0.20 0.64 0.72 0.80 0.92
ResNet-56-α CIFAR-100 0.06 0.06 0.08 0.10 0.36 0.72 0.88
ResNet-110-α CIFAR-100 0.04 0.12 0.10 0.16 0.36 0.80 0.86
VGG-16 CUB-200 0.06 0.06 0.08 0.02 0.14 0.86 0.84
AlexNet CelebA 0.04 0.24 – – – 0.96 1.00

Table 3: Failure rate of reconstructed images identification. We have five human annotators to
recognize the object in mixed groups of images. The results show that most fail to recognize the
reconstruction from the revised DNNs.

Baselines: Beside the complex-valued DNN, we constructed three baseline networks for comparison.

Original DNNs (baseline 1): The original DNN without any revision was taken as the first baseline
network. For ease of presentation, we also divided the original DNNs into the encoder, the processing
module, and the decoder. The division of modules for original DNNs was the same as that for
complex-valued DNNs.

Noisy DNNs (baseline 2): Based on the original DNNs, we injected noise right after the encoder
module, which was given as a + γ · ε (we set γ = 0.5, 1.0, 2.0). The noisy feature was fed to
the processing module instead of a, as shown in the second row of Fig. 1b. Here ε represents a
high-dimensional random noise with the same average magnitude as a.

DNNs with additional layers (baseline 3): Since the encoder was based on GAN, additional layers
needed to be added, when we revised the DNN. We chose a GAN which incorporated a generator
consisting of a convolutional layer with 3 × 3 × K filters, and a discriminator composed by a
convolutional layer as well as a fully-connected layer. We designed this baseline for fair comparison,
because additional layers in GAN, although without adversarial loss, would incur model structure
changes. Its structure is illustrated by the third row of Fig. 1b.

Attacks: Privacy attacking was implemented as follows. (1) Inversion attacks: we implemented
the inversion attacker based on U-net (Ronneberger et al. (2015)). The original U-net consisted of
8 blocks, and we revised each block to contain six convolutional layers for better reconstruction
performance. (2) Inference attacks: we selected CelebA and CIFAR-100 datasets to test robustness
against property inference attacks. For CelebA, we evaluated the accuracy performance on classifying
30 attributes and the privacy performance on the rest 10 attributes. Likewise, the accuracy of the
DNN on CIFAR-100 was evaluated by the classification error of the major 20 superclasses, and the
privacy was gauged by the classification error of the 100 minor classes.

CelebA and CIFAR-100 adopted the AlexNet and the ResNet-56, respectively, as prototype models.
Their attacker nets were implemented as the ResNet-50 and the ResNet-56, respectively.

5.2 EVALUATION METRICS

We evaluated three aspects of the revised DNNs’ performance: accuracy, privacy, and efficiency.
Accuracy concerned the performance of the model on the task. Privacy was measured by the

7

Published as a conference paper at ICLR 2020

Dataset Average Error

ResNet-20-α CIFAR-10 0.7890
ResNet-20-β CIFAR-10 0.7859
ResNet-32-α CIFAR-10 0.7820
ResNet-32-β CIFAR-10 0.7843
ResNet-44-α CIFAR-10 0.8411
ResNet-44-β CIFAR-10 0.7853
ResNet-56-α CIFAR-10 0.8088
ResNet-56-β CIFAR-10 0.8283
ResNet-110-α CIFAR-10 0.8048
ResNet-110-β CIFAR-10 0.7818
LeNet CIFAR-10 0.7884
LeNet CIFAR-100 0.8046
ResNet-56-α CIFAR-100 0.7898
ResNet-110-α CIFAR-100 0.7878
VGG-16 CUB-200 1.5572
AlexNet CelebA 0.8500

Table 4: Average error (absolute
value) of the estimated rotation an-
gle θ in radian.

Inference Attack 1+Raw Image

Inference Attack 1+Additional Layer

Inference Attack 1+Complex-Valued

(a) Using CelebA Dataset

(c) Using CIFAR-100 Dataset

Inference Attack 1+Raw Image

Inference Attack 1+Additional Layer

Inference Attack 1+Complex-Valued

(b) Using CelebA Dataset

Inference Attack 2+Complex-Valued

Inference Attack 3+Complex-Valued

Inference Attack 2+Additional Layer

Inference Attack 3+Additional Layer

(d) Using CIFAR-100 Dataset

Inference Attack 2+Complex-Valued

Inference Attack 3+Complex-Valued

Inference Attack 2+Additional Layer

Inference Attack 3+Additional Layer

T
e

s
ti
n

g
 E

rr
o

r

T
e

s
ti
n

g
 E

rr
o

r
T
e

s
ti
n

g
 E

rr
o

r

T
e

s
ti
n

g
 E

rr
o

r

Epoch Epoch

Epoch Epoch

Figure 3: The error rates in inferring hidden properties on
CelebA (a)/(b) and CIFAR-100 (c)/(d).

Classification Error Rates Hidden Properties Error Rates Speed(s/images)
Dataset DNN structure 1-NN 3-NN 5-NN
CelebA w/ additional layers 0.0804 0.2014 0.1726 0.162 0.0026
CelebA Complex-Valued DNN 0.1475 0.3169 0.2790 0.2641 0.0027
CIFAR-100 w/ additional layers 0.1873 0.7338 0.6837 0.7116 0.0004
CIFAR-100 Complex-Valued DNN 0.2677 0.9444 0.9363 0.925 0.0007

Table 5: The classification error rates, error rates in inferring hidden properties by k-NN, and
processing speed. We found that while introducing little computational overhead, our method
diminishes the adversary’s power in inferring hidden properties.

robustness of our DNNs against inversion attacks and inference attacks. More specifically, for
inversion attacks, we had the following measures: (1) the average error of the estimation about the
rotated angle θ∗, i.e. |θ∗ − θ̂|; (2) the pixel-level reconstruction error E[‖Î − I‖] where the value of
each pixel was scaled to [0, 1]; (3) failure rate of human identification of the reconstructed images.
For inference attacks, we measured the robustness of DNNs by the error rate of each attack model
(see Sec. 4.3). As to efficiency, we measured the processing time compared with the baseline.

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

Fig. 2 visualizes images reconstructed using features of different baseline networks. Due to space
constraint, this figure only shows partial results. For a complete result, please refer to the supple-
mentary file. Visual effects were significant as the reconstruction in the bottom two rows greatly
shifted away from the original input. Obviously, other misleading input attributes were mixed up
with the original ones. To further examine the effect, we compared classification error rates and
reconstruction errors on a variety of datasets and DNNs in Table 1 and 2. Since the revised DNNs
introduced additional layers to the original DNNs, we compared the performance of both the original
DNNs as well as those with additional layers. Our complex-valued DNNs achieved similar utility
performance, and exhibited significantly higher reconstruction error in almost all groups.

Further, we mimiced the adversary to recover the rotated angle θ∗ with the help of a discriminator
model. Most errors fell into (π/4, π/2) according to Table 4, which indicates even the discriminator
could not tell the original features. We also qualitatively tested the reconstructed result in Table 3.

Fig. 3 and Table 5 show the error rates in inferring hidden properties by attackers. We observed that
in Fig. 3-(a),(c), the error rate of the inference attack 1 on the complex-valued DNNs (dec(a∗)) was
significantly higher than on the baseline 1 (raw images) and baseline 3 (dec(a)), and was close to
random selection (99%) on CIFAR-100. We further tested inference attack 2 and 3. In Fig. 3-(b),(d),
the error rates of the attacker nets trained on a∗ and dec(a∗) were both significantly higher than that
of baseline 3, i.e. a∗ indicated little about the hidden properties. k-NN methods yielded similar
results. Last but not least, we compared the running time of processing the images with different

8

Published as a conference paper at ICLR 2020

DNNs. Batch size of 128 and 100 are used respectively for CelebA and CIFAR-100. It is shown that
the complex-valued DNNs had comparable performance with the baseline.

6 CONCLUSION AND DISCUSSIONS

We propose a novel method to preserve input privacy in the intermediate-layer features of deep neural
networks. The method transforms a traditional DNN into a complex-valued one. Our method has
been tested on a variety of datasets and models. The experimental results have shown the method
effectively boosts the difficulty of inferring inputs for the adversary, while largely preserving accuracy
for the user. Please also find in the appendices for supplemental experiments.

Theoretically, not only the encoder output but also all other intermediate-layer features in the
processing module can preserve privacy. However, we only need to invert the encoder output to
test the privacy performance, since all features in successive layers can be expressed as cascaded
functions of the encoder output. Thus we may consider the privacy performance of the encoder output
as the worst case for all features in the processing module.

ACKNOWLEDGEMENTS

This work was partially supported by National Natural Science Foundation of China (U19B2043,
61906120, and 61902245), and the Science and Technology Innovation Program of Shanghai (Grant
19YF1424500).

REFERENCES

Martin Arjovsky, Soumith Chintala, and Lon Bottou. Wasserstein Generative Adversarial Networks.
In Proceedings of the 34th International Conference on Machine Learning, pp. 214–223, 2017.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative Long
Short-Term Memory. 2016.

Alexey Dosovitskiy and Thomas Brox. Inverting Visual Representations with Convolutional Networks.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4829–
4837, 2016.

Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property inference attacks on
fully connected neural networks using permutation invariant representations. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–633. ACM,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems (NIPS), pp.
1097–1105, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 1998.

Meng Li, Liangzhen Lai, Naveen Suda, Vikas Chandra, and David Z Pan. PrivyNet: A Flexible Frame-
work for Privacy-Preserving Deep Neural Network Training. arXiv preprint arXiv:1709.06161,
2017.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. IEEE, 2019.

9

Published as a conference paper at ICLR 2020

Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-Preserving Machine
Learning. In 2017 38th IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Seyed Ali Osia, Ali Shahin Shamsabadi, Ali Taheri, Kleomenis Katevas, Sina Sajadmanesh, Hamid R
Rabiee, Nicholas D Lane, and Hamed Haddadi. A Hybrid Deep Learning Architecture for Privacy-
Preserving Mobile Analytics. arXiv preprint arXiv:1703.02952, 2017.

David P Reichert and Thomas Serre. Neuronal Synchrony in Complex-Valued Deep Networks. arXiv
preprint arXiv:1312.6115, 2013.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In CVPR, 2015.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3–18. IEEE, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe
Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep Complex
Networks. 2018.

Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, and Philip S Yu. Not Just Privacy:
Improving Performance of Private Deep Learning in Mobile Cloud. In Proc. of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2407–2416.
ACM, 2018.

Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial robustness
with matrix estimation. In Proc. of the 36th International Conference on Machine Learning, ICML
2019, 2019. URL https://arxiv.org/abs/1905.11971.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Qingchen Zhang, Laurence T Yang, and Zhikui Chen. Privacy preserving deep computation model
on cloud for big data feature learning. IEEE Transactions on Computers, 65(5):1351–1362, 2016.

10

https://arxiv.org/abs/1905.11971

Published as a conference paper at ICLR 2020

A PROOF OF Φ(eiθx) = eiθΦ(x)

In this paper, we design the processing module to ensure features of all layers are rotated by the same
angle, in order to enable the later decryption of the feature.

x(0) = a+ bi

x(θ) = eiθx(0)

}
⇒ ∀j, f (θ)

j = eiθf
(0)
j

where f (θ)
j and f (0)

j represent the feature map computed using the input x(θ) and that computed using
the input x(0), respectively.

In order to prove the above equation, we revise basic layers/operations in the processing module to
ensure

Φ(eiθx) = eiθΦ(x)

where Φ(·) denotes the function of a certain layer/operation. x is given as the input of the specific
layer/operation Φ(·). Based on this equation, we can recursively prove f (θ)

j = eiθf
(0)
j .

Let us consider the following six most common types of layers/functions to construct the processing
module, i.e. the conv-layer, the ReLU layer, the batch-normalization layer, the average/max pooling
layer, the dropout layer, and the skip-connection operation.

1. We revise the conv-layer by omitting the bias term. Thus, we get

Φ(eiθx) = w ⊗ [eiθx] = eiθ[w ⊗ x] = eiθΦ(x)

2. We replace the ReLU layer with the non-linear activation function of φ(xijk) =
‖xijk‖

max{‖xijk‖,c} ·xijk.
Thus, we can write the element-wise operation as follows.

φ(eiθxijk) =
‖eiθxijk‖

max{‖eiθxijk‖, c}
· [eiθxijk] = eiθ

[‖xijk‖
max{‖xijk‖, c}

· xijk
]

= eiθφ(xijk)

3. We replace the batch-normalization layer with the function of φ(xlijk) =
xl
ijk√

Eijl[‖xl
ijk‖2]

. Thus, we

can write the element-wise operation as follows.

φ(eiθxlijk) =
eiθxlijk√

Eijl[‖eiθxlijk‖2]
= eiθ

[xlijk√
Eijl[‖xlijk‖2]

]
= eiθφ(xlijk)

4. For the the average/max pooling layer and the dropout layer, we can represent their functions in
the form of Φ(x) = Ax, where x is given as a vectorized feature, and A denotes a matrix. For the
average/max-pooling operation, A represents the selection of neural activations. For the dropout
layer, A contains binary values that indicate the dropout state. In this way, we get

Φ(eiθx) = A(eiθx) = eiθ[Ax] = eiθΦ(x)

5. For the skip-connection operation, we get

Φ(eiθx) = eiθx+ Ψ(eiθx) = eiθ[x+ Ψ(x)] = eiθΦ(x)

where Ψ(·) denotes the function that is skipped by the connection. We can recursively ensure
Ψ(eiθx) = eiθΨ(x).

B EXPERIMENTS: VISUALIZATION

Fig. 4, Fig. 5 and Fig. 6 respectively give the visualization effect on CIFAR-10, CUB200-2011, and
CelebA, when reconstructing the inputs from features.

Fig. 7 shows the reconstructed input images when an adversary launches a feature inversion attack: it
rotates x by an angle continuously drawn from (0, 2π) and then reconstruct the input on the rotated

11

Published as a conference paper at ICLR 2020

Figure 4: CIFAR-10 images reconstructed from different features on a variety of LeNet-based neural
networks.

Figure 5: CUB200-2011 images reconstructed from different features on a variety of VGG-16-based
neural networks.

Figure 6: CelebA images reconstructed from different features on a variety of AlexNet-based neural
networks.

12

Published as a conference paper at ICLR 2020

Figure 7: CelebA images reconstructed from feature x rotated by different angles within (0, 2π). We
pick the most meaningful ones. The first image of every two row is the original input image.

13

Published as a conference paper at ICLR 2020

features. The first image of every two row is the original input image. We found that most meaningful
reconstructed pictures are mostly drawn from (θ + π

4 , θ − 3π
4). Most reconstructed images have little

resemblance to the original input, and present meaningful interpolation of the original sample and the
randomly chosen sample. The result is an illustration of our k-anonymity privacy guarantee.

Fig. 8 shows images reconstructed from correctly decoded features. The result demonstrates that,
with the ‘key’ — θ, one can successfully recover original inputs from features.

Figure 8: CelebA images and CIFAR-10 images reconstructed from feature x correctly decoded with
the knowledge of θ. The reconstructed images have high similarity with the original inputs.

original images

3 channels
dec(x)

3 channels
dec(a*)

5 channels
dec(x)

5 channels
dec(a*)

Figure 9: CelebA images reconstructed from features with many zeros. Even if the images are sparse,
the adversary cannot recover any useful information from the features.

C EXPERIMENTS: ATTACK WITH SIDE INFORMATION

We consider attacks with side information in this section. As we cannot give a complete list of such
side information, we show an example where an adversary launches attacks to features with many
zero values to see if it can recover the input. Fig. 9 shows the reconstruction results when the images
are sparse with many zeros. The top row of the figure gives the original input where we shrink the
CelebA images from 224 × 224 × 3 to 160 × 160 × 3 and pad them to their original size. The
second/fourth and third/fifth rows respectively give the reconstruction results of dec(x) and dec(a∗)
when the channel number is 3 and 5. As we can tell, even with the side information that the original
images are padded with many zeros, it is hard for the adversary to recover images resembling the
original inputs.

D ERROR DISTRIBUTION OF THE ESTIMATED ROTATION ANGLE

For a complete view on the error distribution of the estimated rotation angle, we re-display the results
of Table 4 in Table 6 and Fig. 10. In Fig. 10, we choose two representative results. The estimated
θ on ResNet-44-β is centralized around 300 degree but spreads across a range of 100 degrees. The
value on VGG-16 almost spreads across the whole range of (0, 2π).

14

Published as a conference paper at ICLR 2020

Dataset Error Mean Error STD

ResNet-20-α CIFAR-10 -0.7887 0.3728
ResNet-20-β CIFAR-10 -0.7858 0.2944
ResNet-32-α CIFAR-10 -0.7818 0.3634
ResNet-32-β CIFAR-10 -0.7842 0.3273
ResNet-44-α CIFAR-10 -0.7850 0.6897
ResNet-44-β CIFAR-10 -0.7852 0.3314
ResNet-56-α CIFAR-10 -0.7851 0.6163
ResNet-56-β CIFAR-10 -0.7833 0.5998
ResNet-110-α CIFAR-10 -0.7959 0.4688
ResNet-110-β CIFAR-10 -0.7813 0.3420
LeNet CIFAR-10 -0.7833 0.4244
LeNet CIFAR-100 -0.7776 0.5670
ResNet-56-α CIFAR-100 -0.7822 0.5650
ResNet-110-α CIFAR-100 -0.7864 0.3803
VGG-16 CUB-200 -0.1151 1.784
AlexNet CelebA -0.7889 0.6617

Table 6: Error distribution of the
estimated rotation angle θ in radian.

ResNet-44-β, CIFAR-10 VGG-16, CUB-200

Figure 10: Histogram of the error in estimating the rotation
angle θ.

E FEATURE DISTRIBUTIONS

We also conduct an unsupervised explorative analysis of the intermediate-layer feature distributions:
Fig. 11-(a) shows the visualization results of features of a conventional ResNet-56 and a complex-
valued ResNet-56. Both networks are learned on CIFAR-10. Different colored digits represent
different classes. As we can tell, complex-valued features hide categorical information better than its
counterparts in conventional neural networks.

F LEARNING ATTRIBUTE CORRELATIONS

We perform an experiment to test whether or not our complex-valued DNN can prevent the adversary
from learning attribute correlations. We learn a traditional ResNet-56 and a complex-valued ResNet-
56 to classify major 20 superclasses in the CIFAR-100 dataset. For each trained ResNet-56, let
xI denote the intermediate-layer feature corresponding the image I . For every pair of xI and xI′ ,
we label the pair as correlated if the ground truth of I and I ′ belong to the same superclass, and
uncorrelated otherwise. We train a classifier on such feature-label pairs to see if the classifier can learn
such correlation between attributes. The results are shown in Fig. 11-(b), respectively for the original
feature and the complex-valued one. The high error (42.41%) of latter illustrates the complex-valued
feature preserves the attribute correlations.

(a) t-SNE visualization of the original and
complex-valued features.

(b) Correlation test of the original and
complex-valued features.

original features
complex-valued

 features

Figure 11: (a) t-SNE visualization of the original and complex-valued features. (b) Learning attribute
correlations from the original and complex-valued features.

15

	Introduction
	Related Work
	Threat Model and Privacy Guarantee
	Approach
	Overview
	Complex-Valued Neural Networks
	Attacks to Complex-Valued DNNs

	Experiments
	Implementation Details
	Evaluation metrics
	Experimental Results and Analysis

	Conclusion and Discussions
	Proof of (eix)=ei(x)
	Experiments: Visualization
	Experiments: Attack with Side Information
	Error Distribution of the Estimated Rotation Angle
	Feature Distributions
	Learning Attribute Correlations

