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Abstract—Federated Learning (FL) framework enables train-
ing over distributed datasets while keeping the data local.
However, it is difficult to customize a model fitting for all
unknown local data. A pre-determined model is most likely to
lead to slow convergence or low accuracy, especially when the
distributed data is non-i.i.d.. To resolve the issue, we propose a
model searching method in the federated learning scenario, and
the method automatically searches a model structure fitting for
the unseen local data. We novelly design a reinforcement learning-
based framework that samples and distributes sub-models to the
participants and updates its model selection policy by maximizing
the reward. In practice, the model search algorithm takes a long
time to converge, and hence we adaptively assign sub-models to
participants according to the transmission condition. We further
propose delay-compensated synchronization to mitigate loss over
late updates to facilitate convergence. Extensive experiments
show that our federated model search algorithm produces highly
accurate models efficiently, particularly on non-i.i.d. data.

Index Terms—Edge Cloud Computing, Neural Architecture
Search, Reinforcement Learning

I. INTRODUCTION

The recent progress of deep learning has witnessed a variety
of machine learning applications such as objective recognition,
voice assistant, machine translation, product recommendation,
gaining popularity in everyday life. To protect user privacy,
federated learning is proposed to enable computational parties
to collaboratively learn a shared model while keeping all
training data local, relieving the need for centralized storage.
It also takes full advantage of the distributed computational
resources such as mobile devices.

In typical federated learning frameworks, the model struc-
ture is usually given in advance. Mobilenet [1], Yolo [2],
shufflenet [3], and many other Deep Neural Network (DNN)
models may be good models for deployment, with or without
verified performance on particular datasets. However, real-
world data are far more complicated than a well-behaved
training set, and their distributions cannot be foreknown.
It has been recently pointed out that due to pervasive and
unpredictable deviations from i.i.d. datasets, real-world data
is particularly hard to train [4], [5], and models with pre-
determined structures often fail to converge or result in sub-
optimal solutions [6]. Therefore, it is essential to search
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models customized for the distributed data without violating
the privacy constraint of local datasets.

Conventional neural architecture search (NAS) algorithms
are not designed for distributed frameworks. NAS methods
aim to automatically search for neural network structures
customized for the underlying distribution of the dataset.
Many approaches such as gradient-based methods [7]–[9],
evolutionary algorithms [10]–[12], and reinforcement learning-
based [13], [14] approaches have been proposed, and the
searched models usually outperform the hand-designed ones.
However, they are all designed to run on centralized datasets. It
remains a problem on how to perform model search efficiently
in a distributed setting, in particular, taking the mobility of the
participants into consideration.

We propose a reinforcement learning based model search
method in the setting of federated learning, which searches
for model structures on a supernet, particularly when the
data follows non-i.i.d. distribution. Previous works [15]–[18]
have made some progress by proposing distributed versions
of evolutionary or gradient-based NAS approaches. However,
those methods pose significant overhead on the decentralized
devices, either consuming long GPU hours or occupying large
network resources. For instance, in FedNAS [17] and DP-
FNAS [18], each participant needs to search the entire supernet
to obtain a model. Transferring the entire supernet would incur
a heavy transmission burden on the local device.

We design a lightweight approach for the distributed devices
to jointly search for a suitable model structure. In particular,
we describe the search space by hyperparameters, generate
sub-models sampled from the search space, train the policy to
maximize the expected reward (accuracy) for the generated
models. By converting the discrete search to search over
probabilistic space, only the sampled sub-models, which are
much smaller than the supernet, are transferred and computed
on each participant, largely alleviating the local computational
and communication burden.

Another critical issue is that the model structure search in
distributed settings takes a long time to converge. Hence we
propose two approaches to facilitate training. We observe that
sub-models sampled are of different sizes and hence can be as-
signed to participants according to the transmission condition.
Moreover, the local computation time varies from participant
to participant depending on the computation workload, device
resource, network bandwidth, etc. Thus it would cause a
significant delay if a simple blocking strategy is adopted
waiting for the straggler. In extreme case, the search process



would be blocked forever if a participant loses connection with
the server. Asynchronous methods have been widely discussed
in previous literature [15]–[17], which unfortunately are not
feasible for our method — the update on supernet weights and
the global search controller can hardly be parallelized due to
the serial computational bottleneck.

Facing the challenge, we propose a soft synchronization
scheme. In our scheme, the update of the search controller
and the supernet are done on the server. In each round,
the server only waits until most sub-models are updated,
ignoring the stragglers. To fully take advantage of the previous
updates from late-coming participants, we propose a delay-
compensated approach that uses a second-order Taylor expan-
sion to approximate the fresh update with stale data. Compared
with throwing away or directly using the stale data, our
soft synchronization scheme with delay-compensation offers
better-searching performance, almost comparable to the hard
synchronization scheme.

Highlights of our contributions are as follows: we propose
an efficient RL-based federated model search algorithm to
achieve low communication and computation costs at the
participant end. To speed up convergence, we adaptively
distribute sub-models according to the transmission conditions.
We also develop a soft synchronization scheme with delay
compensation to fully utilize the stale update to improve
searching performance. A variety of experiments in different
settings are conducted to verify our design. It is shown that
our algorithm searches models of high accuracy on non-i.i.d.
dataset, yet with few communication rounds.

II. RELATED WORK

Our work is most related to the following literature.

A. Neural Architecture Search

The technique of neural architecture search (NAS) [19]
aims for automating the design of neural networks and can be
categorized according to search space, search strategy, and the
performance estimation strategy used. Among them, the search
strategy receives the most attention. Common search strategy
includes reinforcement learning (RL) [13], [14], gradient-
based algorithms [7]–[9], and evolutionary algorithms [10]–
[12]. The search strategy of our work falls into the reinforce-
ment learning category.

RL-based NAS typically uses an RL controller to produce a
policy according to which a model architecture is sampled in
each round and the policy would be adjusted correspondingly
to the reward to guide the searching process. The controller can
be a recurrent neural network (RNN) as in ENAS [13] which
treats the model as a DAG and uses an LSTM as the controller.
ProxylessNAS [14] adopts an architecture parameter matrix
as a controller to find the optimal operations that maximize
a reward. We also use an architecture parameter matrix as a
controller in our work, but novelly update the controller in a
distributed manner.

Gradient-based NAS transforms the discrete search space
of model structures into a continuous space and optimizes the

search objective with gradient-based algorithms. A represen-
tative algorithm is DARTS [7], which searches the optimal
structure of a cell and stacks cells into a complete model.
DARTS+ [8] and FairDARTS [9] reveal the performance
collapse phenomenon caused by overlaying skip-connection
operation with other convolutional operations on the same
edge. Our work inherits the search space of DARTS but
intentionally lets sub-models have one operation per edge, and
thus avoids the performance collapse issue.

Evolution-based NAS [10]–[12] views each model structure
as an individual of a species, and improves the performance
of the species by evolutionary algorithms. Unfortunately, evo-
lutionary algorithms always suffer from low efficiency and
requires exorbitant computation time.

B. Federated Model Search

In federated learning, participants’ data is usually non-i.i.d.
and can be highly dynamic. A pre-defined model may not serve
the data distribution best, resulting in a sub-optimal solution.
To deal with the problem, federated model search is proposed
to automatically design DNN models for FL frameworks.

It is challenging to design a decentralized NAS method
as most existing ones are developed in a centralized setting.
The following works have made some progress in this area.
By applying various compression techniques to a well-trained
(backbone) model, Xu et al. [15] generate a group of new
models which are trained locally by users, and the best one
will become the backbone model in the next round. Although
DNN models get automatically evolved in the method, it still
requires a pre-defined model as the initial backbone. There-
fore, its flexibility and searching performance are unsatisfying.
Zhu et al. [16] adopt an evolutionary algorithm to search for a
DNN model in the FL scenario. Since evolutionary NAS keeps
a group of DNN models as species, it is natural to distribute
the training of each model to the participants and apply a
global evolution on the central server with the retrieved results.
However, suffering from the low efficiency of the evolutionary
algorithm, this method can only run in a simple search space
and output a relatively inaccurate model. FedNAS [17] devel-
ops a gradient-based federated NAS method based on DARTS.
While DARTS represents its search space as a supernet and
searches on the supernet to optimize the accuracy, FedNAS
sends the training task on the supernet to participants and
performs global updates with the averaged gradients. Similar
to FedNAS, DP-FNAS [18] adopts the search space of DARTS
and distributes the supernet’s computation tasks to participants.
These two methods can generate DNN models almost com-
parable with traditional centralized NAS methods. However,
it is impractical to send the giant supernet to each participant
considering the exorbitant communication cost and user-end
computation consumption, especially when the participants are
resource-intensive mobile devices. Our work searches in the
same design space with DARTS and FedNAS, but novelly
proposes a synchronization strategy sending lightweight sub-
models to participants, which is significantly more efficient in
communication and computation costs.



Different from previous works, we resolve federated model
search by RL-based approach. Our method can search effi-
ciently in a well-defined search space and brings minimal
burden to the participants. We exceed the previous federated
model search schemes while meeting the stringent resource
requirement of the participants.

III. PRELIMINARIES

In this section, we introduce some backgrounds for ease of
understanding our work.

A. Federated Learning

Federated Learning (FL) is a decentralized framework for
training neural network models. The most commonly used
FL algorithm is Federated Averaging (FedAvg) [20], which
distributes training to each participant and performs a global
update with retrieved results.

FedAvg algorithm is composed of two parts. On the server
side, the server initializes the global model parameter θ, and
select n participants out of K according to a pre-defined
proportion. The server sends the global model to those par-
ticipants, and retrieve models θkt+1, k ∈ {1, . . . , n} trained by
participants with their local data. The weighted average of all
retrieved models become the new global model θt+1 for the
next round of updates. On the participant side, each receives
a model θ from the server at the beginning of each round.
In the following training iterations, the participant performs
batch gradient descent on its local dataset to update its copy of
the global model. After several training epochs, participant k
returns the updated model θkt+1 back to the server and receives
the new global model for the next round of training.

In another version of FedAvg, participant k computes the
gradient gkt+1 = ∇L(θ), and uploads it to the server. The
global model on the server can be updated by the average of
the gradients θt+1 ← θt − η

∑n
k=1

1
ng

k
t+1.

B. Reinforcement Learning

Reinforcement Learning (RL) is the process of agents learn-
ing a policy to take actions in an environment to maximize
rewards [21]. At each step, the RL agent observes states
and performs action at. By at, st transits to the next state
st+1 and the agent receives a reward. The agent’s decision
making procedure at each time is characterized by a policy
π(s, a, θ) = P{at = a|st = s, θ}, which is parameterized
by θ, and can be described by state transition probability
distributions. The policy network calculates probability per
action and updates the policy to maximize the reward function
f(·):

∇θEπ[f(s, a)] = Eπ[f(s, a)∇θ log π(s, a, θ)] (1)

The RL method has a natural advantage to be applied in a
distributed setting: each action can be sampled and its reward
can be computed individually.

C. Delay-Compensated ASGD

In decentralized machine learning frameworks, it is of
the utmost importance to perform parallel stochastic gradient
descent (SGD) across different training entities to guarantee
convergence. There are two types of parallelization — syn-
chronous SGD (SSGD) and asynchronous SGD (ASGD) [22]–
[24]. In the former, a global update can only be executed after
all participants finishing their local updates. But SSGD is quite
inefficient as stragglers may block the entire process. Hence
ASGD is proposed, in which a global update is allowed as
soon as one of the participants has done training, eliminating
the need for awaiting other participants.

A critical issue of ASGD is the staleness of data. In ASGD,
likely, the global model parameters have already been altered
by one participant while another participant has not finished
the computation on the previous parameters. It is often the
case that the server receives a participant’s update from a
past round. A naive solution is to throw the stale data away.
However, it would be a waste of participants’ computation
resources, especially when there is a large proportion of
slightly stale data. Another solution is to use the stale data
anyway but it would harm the training process. DC-ASGD
[24] accommodates stale data by utilizing the second-order
Taylor expansion to approximate the fresh gradient with stale
data. However, their method does not directly apply to our
work since ours poses a bilevel optimization problem where
both the model weights and architecture parameters need to
be updated on stale information.

IV. RL-BASED FEDERATED MODEL SEARCH

In this section, we show the problem of model search in
the federated learning setting, and introduce our reinforcement
learning based solution.

We formulate the model search task as an optimization
problem that seeks the optimal neural architecture on the union
of participants’ datasets to minimize the total loss. Conven-
tional federated learning does not take the model structure into
consideration whereas the model search is usually performed
in a centralized setting. Our objective is as follows.

minimize
α,θ

K∑
k=1

∑
i∈Dk

L(xi, yi;α, θ). (2)

K is the total number of participants and Dk is the local
dataset of participant k ∈ {1, . . . ,K}. Architecture parameter
α represents the model structure, and model weights are
denoted by θ. L is the loss function on the model where
xi, yi are data instances and labels respectively. The objective
is to minimize the overall loss of a model on the distributed
datasets by choosing appropriate architecture parameters and
model weights.

We face two challenges: first, Dk for all k are most likely
to be non-i.i.d. as the data distribution varies from participant
to participant. Each participant keeps fitting the local model
on their local samples. If we use a model with a structure
designed for i.i.d. data, the model would treat local samples
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Fig. 1. Candidate Operations

as i.i.d. data, and hence fail to adapt to the divergence across
participants’ model weights or lead to overfitting in some
cases. Second, both the hyperparameters α and parameters
θ need to be optimized at the same time in a distributed
fashion on resource-stringent devices. We propose a scheme
where both α and θ are optimized over distributed dataset:
θ is optimized with the regular SGD algorithm on the local
dataset and α is treated as controller parameters and updated
with reinforcement learning-based strategies.

Overall, in our RL-based model search framework, the
structure of the model θ is a state. The RL-controller generates
a policy parameterized by α, according to which the model
transits from one state to another. The reward is the accuracy
loss over the training data. We formally define the federated
model search problem as a Markov Decision Process (MDP)
with each component as follows.

A. Problem Formulation

Design Space: We adopt the well-designed search space in
DARTS [7]. The search space is composed of two types of
cells with each cell having two input nodes and one output
node. A cell takes the outputs from the preceding two cells as
inputs, and a complete DNN model is made up of stacked cells.
A cell can be represented by a Directed Acyclic Graph (DAG).
In the DAG, a node indicates an intermediate feature, and an
edge denotes a candidate operation. To allow differentiation
on operations, we represent an edge as a softmax of a set of
possible operations:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x). (3)

Every operation in the set is represented as o(·) applied on
feature x. α(i,j)

o indicates the importance of operation o over
all operations on an edge between node i and j. O means
the set of all candidate operations, including convolution,
pooling, and so on. We adopt the same N = 8 kinds of
candidate operations with DARTS as shown in Fig. 1. An
edge of a sampled sub-model represents exactly one of the
eight candidate operations. Combinations of the operations
constitute the architecture search space O. All candidate
operations are parameterized by a learnable matrix α where
each element represents the softmax likelihood of an operation
on an edge. We refer to the complete model with all cells and

all 8 operations per edge as a supernet, and we sample sub-
models from the supernet according to α. Each sub-model can
be considered as a candidate of the DNN model, we search
for.

We consider both the architecture and the parameters of
the supernet as the state. α denotes the policy variable which
chooses an action given a state. The operation of each edge is
chosen according to the softmax probability:

pi =
exp(αi)∑j=N
j=1 exp(αj)

, ∀i = 1, . . . , N, (4)

where N is the total number of candidate operations. Eq. (4)
represents the i-th operation is chosen with probability pi. We
transform the probabilities into binary gates:

g = binarize(p1, · · · , pN ) =

 [1, 0, · · · , 0], w/ prob. p1,
· · ·

[0, 0, · · · , 1], w/ prob. pN .
(5)

The one-hot binary mask represents the action of selecting
the operation with the corresponding index. Specifically, we
apply the binary mask g to the operation vector so that only
one operation remains on each edge:

ō(x) =

N∑
i

gioi(x) =

 o1(x), w/ prob. p1,
· · ·

oN (x), w/ prob. pN .
(6)

Therefore, with α one can sample a sub-model according to
the softmax probability distribution. By jointly considering
the transition probability pi per edge, one can calculate the
transition probability from one state to another, which is also
the probability of sampling a sub-model p(Nk).

We design a reward function based on the observations from
participants. Formally, the reward function on policy α is

J(α) = Eg∼α[R(Ng)] =
∑
i

piR(N (e = oi)), (7)

where R(·) denotes the training accuracy of a DNN model,
N represents the supernet, Ng means a sub-model sampled
from the supernet with mask g. We implement baseline, a
common RL trick, subtracting the moving average to reduce
the variance in training [25]–[27]:

R(Ngm) = ACC(Ngm)− bt+1, (8)

where

bt+1 = β
1

M

M∑
m=1

ACC(Ngm) + (1− β)bt. (9)

B. Optimization

In the search space of Sec. IV-A, we aim to optimize the
architecture α and model weights θ of the supernet on dis-
tributed Dk, k ∈ {1, . . . ,K}. We observe that the architecture
parameters are updated w.r.t. the reward, whereas the reward
can be computed in parallel on each sub-model. We take
advantage of this property to devise a distributed computation
framework.



We maximize the expected reward of all sub-models sam-
pled from the supernet by computing gradients w.r.t. the
current α:

∇αJ(α) =
∑
i

R(N (e = oi))∇αpi

=
∑
i

R(N (e = oi))pi∇α log(pi)

= Eg∼α[R(Ng)∇α log(p(g))]

≈ 1

M

M∑
m=1

R(Ngm)∇α log(p(gm)).

(10)

The last step of Eq. (10) is the key to our formulation. Here
gm represents the binary mask for model m and p(gm) is
the probability to sample gm according to Eq. (4). Note that
R(Ngm) can be computed on each participant individually.
Conventionally, the computation of ∇α log(p(gm)) requires
backward propagation on log(p(gm)). Here we transform it
into a form that is easy-to-compute. Since only one operation
is chosen for each edge on the sampled sub-model, one entry
of a sampled binary mask g is 1. Letting the i-th entry be 1,
i.e., gi = 1, we have p(g) = p(gi = 1) = pi. Because pi is
a function of α, we can directly get the analytical solution of
∇α log(pi). By Eq. (4), we can obtain the gradient:

∂ log(pi)

∂αj
= δij −

exp(αj)∑
j exp(αj)

= δij − pj , (11)

where

log(pi) = αi − log(
∑
j

exp(αj)),

δij =

{
0, i = j,
1, i 6= j.

We can rewrite Eq. (11) to a more compact form:

∇α log(pi) =

(
∂ log(pi)

∂α1
, · · · , ∂ log(pi)

∂αi
, · · · , ∂ log(pi)

∂αN

)
= (−p1, · · · , 1− pi, · · · ,−pN ).

(12)

Eq. (12) can be calculated efficiently on the server, which
decouples the local computation and server computation in
Eq. (10). Hence the gradient of α can be evaluated in two
parts, with one part entirely on the participant and the other
on the server, which lies the foundation of the distributed NAS
framework.

With fixed α, the supernet’s model weights θ are to be
optimized. We found that it is possible to update the weights
of each sub-model locally, and perform gradients averaging
on each weight, according to FedAvg [20] and the parameter-
sharing scheme in ENAS [13].

The update of θ is as follows. In each epoch, the server
samples a group of sub-models from the supernet and sends
them to participants. Participants train the sub-models on their
respective local datasets and return the gradient of each weight.
The server collects the gradients of sub-model weight from
participants and averages them to obtain the update to the

corresponding supernet weight. Then, the server updates the
supernet weight. Since, likely, an operation on one edge is
never sampled by any sub-model, we define the gradient of
such an operation as zero.

Adaptive transmission. Considering the mobility of partic-
ipants, the transmission condition for each participant differs
by the environment. Hence we assign the sampled sub-models
by their respective sizes and the transmission condition. We
sort the sub-models by model size and sort the participants by
their data rate. By allocating larger sub-models to participants
with better transmission conditions, we can reduce the overall
latency by saving communication time.

The overall algorithm works as follows. For simplicity, we
assume that there are always K participants online. The server-
side algorithm works as follows. In each round, the server
samples a binary mask gk for each participant k according
to Eq. (4). Then we prune the supernet with gk and obtain
sub-model θk with only one operation on each edge. The
server sends the sub-model to the participant according to
transmission condition and retrieves the reward R(θk) as well
as the gradient of weights ∇θkLk. Given that, the server
computes ∇αJ according to Eq. (10) and Eq. (12) to update
the architecture parameter α. Finally, the server computes
the averaged gradient ∇θL based on sub-models’ gradients
∇θkLk, and updates the supernet weights θ.

The participant-side algorithm is essentially a DNN model
training task. In each round, the participant receives a sub-
model sampled from the supernet and trains the sub-model
on its local dataset using batch gradient descent. Through one
backward propagation, the gradients ∇θkLk and the reward
R(θk) is computed and sent back to the server.

Our algorithm is highly efficient in comparison with other
works. The FL participant only needs to train the sub-model
in each round. FedNAS [17] and DP-FNAS [18] adopt the
same search space with us but send the whole supernet to
participants. In contrast, the sub-model distributed in our
algorithm has only one operation per edge, reducing the model
size to 1

N of a supernet. As the communication cost and
participant-end training cost are proportional to the model size,
our method is approximately N times more efficient in terms
of participants’ costs.

V. DELAY-COMPENSATED FEDERATED MODEL SEARCH

In the practical implementation of federated RL for NAS,
we found that it is inefficient to have the server wait for the
completion of each participant for every round of update, as
it would lead to low efficiency or even permanent blocking.
Especially in the federated learning framework, the network
connectivity of each participant differs on the environment.
Some participants could be in poor network condition and
stragglers will affect the whole system’s performance. On
another hand, an asynchronous scheme is not feasible in our
case due to the serialization bottleneck in updating the global
parameters.

To resolve the issue, we design a delay-compensated scheme
to apply soft synchronization in our algorithm. Specifically,



in each round, the server only waits for the completion of
most participants and ignores the stragglers for the time being.
Updates of the stragglers would be processed later when they
arrive.

Since the mechanism introduces staleness to the optimiza-
tion, it is our goal to take advantage of the stale update without
hurting the model performance. In practice, it is very likely
that a parameter is altered by a participant while another
participant still works on its previous version. In this situation,
the slower participant’s update is based on the stale data. We
are inspired by DC-ASGD [24], which utilizes the second-
order Taylor expansion of the loss function to approximate
the fresh update with stale data, to design a delay-compensated
soft synchronization scheme.

Different from the standard ASGD scenarios, our federated
model search runs under a soft synchronization framework
due to serialization bottlenecks. Besides, we face a more
complicated optimization problem in the framework — both
architecture parameters and models’ weights can be stale in
the distributed training. Hence we apply approximation both
on the weights and architecture parameters.

A. Update over Staleness

We introduce the delay-compensation scheme for weights θ.
As each sub-model contains a part of θ, we use w to denote the
sub-model’s weights. The subscript denotes the computation
round of w and the superscript represents the computation
round of α which w is sampled from. For example, wtt+τ
means a sub-model inherits its weights from the t + τ -th
round’s θ and its structure is sampled according to t-th round’s
α.

Assume we are at round t + τ . A fresh gradient for opti-
mizing θ is h(wt+τt+τ ), but we only have a stale gradient h(wtt).
Since α affects w through an implicit way, we cannot directly
represent w as a function of α. Hence we only approximate
the fresh gradient by alleviating the staleness of θ but ignore
the staleness in α. In detail, we approximate h(wt+τt+τ ) using
h(wtt+τ ), the gradient of a sub-model with fresh weight but
sampled from a stale distribution:

h(wt+τt+τ ) ≈ h(wtt+τ )

≈ h(wtt) + λh(wtt)� h(wtt)� (wtt+τ − wtt)
(13)

In Eq. (13), h(wtt) and wtt can be locally computed on each
participant while the server has a copy of wtt+τ .

According to Eq. (10), the gradient of α is computed with
sub-model rewards and a probability distribution of α. For
consistency, we express the reward R(Ngm) as R(w). And
we use gmt to represent gm ∼ αt, i.e., a binary mask gm

sampled according to the t-th round α, we have Ngmt = wtt .
Since the reward is computed locally on each participant, the
server only utilizes the reward of the stale model. We choose
to approximate the gradient of α by:
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Fig. 2. The framework of delay-compensated federated RL for model search.

∇αJ(α) =
1

M

M∑
m=1

R(wt+τt+τ )∇αt+τ log(p(gmt+τ ))

≈ 1

M

M∑
m=1

R(wtt)∇αt+τ log(p(gmt+τ )),

(14)

where ∇αt+τ log(p(gmt+τ )) can be approximated with the late
gradient and the current αt+τ :

∇αt+τ log(p(gmt+τ )) ≈ ∇αt log(p(gmt ))+

λ∇αt log(p(gmt ))�∇αt log(p(gmt ))� (αt+τ − αt). (15)

B. Delay-Compensated Federated RL

Our model search algorithm is presented in Alg. 1. We
replace the hard synchronization with a soft synchronization
and apply the delay-compensated scheme in Line 17 to 29.
Memory pools are used for storing stale αs, θs, and masks gs.

The participant computes the gradients on its sub-model
as well as the reward, and sends them to the server. In the
server-side algorithm, at the start of each round, the super-
net’s weights θ and architecture parameters α are saved into
memories. The server samples binary masks and distributes
sub-models to the participants.

Fresh updates from participants will be directly adopted,
while for each late participants, the server throws away any
update exceeding the staleness threshold since they are almost
useless. The server retrieves the fresh sub-model weights θtm
and stale sub-model weights θt

′

m using stale α, θ, g in the
memory. Note that it would be more efficient to store these
data than to save all past sub-models. Then the server applies
the delay-compensated update to both ∇θL and ∇αJ . And
an averaged gradients are adopted to update α and θ. Finally,
the data exceeding the staleness threshold is kicked out of the
memory pool. By removing the hard synchronization barrier,
our soft synchronization scheme is more flexible at the extra
memory and computation costs of the server. The overall
delay-compensated federated RL framework is given in Fig. 2.



Algorithm 1 Delay-Compensated Federated Model Search
Input: Global weights θ, global architecture parameters α,

weights memory Θ, architecture parameters memory A,
binary masks memory G, the number of participants K,
mini-batch size B, learning rate ηL ηJ , staleness threshold
∆.

1: Sever Update:
2: Initialize θ, α
3: for round t = 1, 2, . . . do
4: save θt into Θ, αt into A
5: for participant k = 1, 2, . . . ,K do
6: gtk ← binarize(p1, . . . , pN )
7: save gtk into G
8: θtk ← prune(θt, gtk)
9: end for

10: sort participants by bandwidth
11: sort θtk (k = 1, 2, . . . ,K) by ‖θtk‖
12: for participant k = 1, 2, . . . ,K do
13: Participant Update(t, k, θtk)
14: end for
15: soft synchronization, wait for most participants
16: for participants m = 1, 2, . . . ,M do
17: receive R(θt

′

m),∇Lm
18: if t = t′ then
19: ∇θL← ∇θL+ ηL∇Lm
20: ∇αJ ← ∇αJ + ηJR(θtm)∇ log p(gtm)
21: else
22: if t− t′ > ∆ then
23: ignore update, M ←M − 1
24: else
25: get θt

′
from Θ, αt

′
from A, gt

′

m from G
26: θtm ← prune(θt, gt

′

m) , θt
′

m ← prune(θt
′
, gt

′

m)
27: ∇θL ← ∇θL + ηL(∇Lm + λ∇Lm � ∇Lm �

(θtm − θt
′

m))
28: ∇αJ ← ∇αJ + ηJR(θt

′

m)(∇ log p(gt
′

m) +
λ∇ log p(gt

′

m)�∇ log p(gt
′

m)� (αt − αt′))
29: end if
30: end if
31: end for
32: ∇θL← ∇θL/M , ∇αJ ← ∇αJ/M
33: update α with ∇αJ , update θ with ∇θL
34: remove θt−∆ from Θ , remove αt−∆ from A
35: remove gt−∆

k from G for k = 1, 2, · · · ,K
36: end for
37: Participant Update(t, k, θtk):
38: B← Split local dataset into batches of size B
39: Randomly sample a batch b ∈ B
40: ∇θtkLk ← ∇θtkL(θtk, b)
41: Compute R(θtk) through the same backward propagation
42: Return R(θtk),∇θtkLk to the server

VI. EXPERIMENT

A. Implementation Detail

Setup. We choose image classification on CIFAR10, SVHN,
and CIFAR100 as our target tasks. Real-world datasets are

TABLE I
DEFAULT EXPERIMENTAL SETTINGS

Name Value Name Value

batch size 256 # participant (K) 10
learning rate (θ) 0.025 learning rate (P3, centralized) 0.025
momentum (θ) 0.9 momentum (P3, centralized) 0.9

weight decay (θ) 0.0003 weight decay (P3, centralized) 0.0003
gradient clip (θ) 5 gradient clip (P3, centralized) 5
learning rate (α) 0.003 learning rate (P3, FL) 0.1
weight decay (α) 0.0001 momentum (P3, FL) 0.5
gradient clip (α) 5 weight decay (P3, FL) 0.005

baseline decay (α) 0.99 # warm-up steps 10000
cutout [28] 16 # searching steps 6000
random clip 4 # training epochs 600

random horizontal flapping 0.5 # FL training steps 6000

mostly non-i.i.d. and it is our main motivation to devise a
federated framework to search for a best-fit model. Hence we
compose non-i.i.d. CIFAR10 and SVHN dataset according to
FedNAS [17]. For each class, we distribute its data over all
participants according to the Dirichlet distribution DirJ(0.5).
The new datasets have distributions different from the i.i.d.
ones and hence require fast adaptation. All experiments are
done on servers with GTX 1080 Ti GPUs. Our algorithm is
implemented by Pytorch, and the communication between
servers and participants is implemented by Distributed RPC.
The default hyperparameters are listed in Table I.

Our algorithm goes through four phases: the first one (P1)
is the warm-up phase, where we fix α and only train θ.
Since operations such as convolution have far more parameters
than some operations like pooling, it is only fair to compare
their performance until the weights nearly converge before
searching. The second (P2) is the actual searching phase where
our algorithm is performed to seek the optimal α and θ. At
the end of this phase, we obtain a DNN model architecture.
In the third phase (P3), we re-initialize the searched model
structure and train the model from the scratch. We have two
approaches for this phase: the searched model is trained in
a centralized fashion and in a federated learning setting. In
the final phase (P4), the trained model is evaluated on the
testing set. Since the algorithm converges slower on non-i.i.d.
datasets, we conduct the searching phase for 10000 steps on
CIFAR10 and 4000 steps on SVHN. We only use 16 cells at
the P4 for SVHN.

We use the average accuracy of participants’ models as the
metric to gauge searching performance. The performance of
the warm-up phase and searching phase is given in Fig. 3 and
4. The blue lines show the average training accuracy of 10
participants’ models and the orange line is the moving average
with a 50-step window. Both training processes converge in
the two phases, and we further investigate the impact of α
on searching. We found that fixing θ and updating α alone
would result in the failure of convergence and much lower
accuracy than Fig. 4, as shown in Fig. 5. Hence it is critical
to seek the optimal α and θ at the same time. The searching
performance on non-i.i.d. data (Fig. 6) is similar to the one
on i.i.d. data (Fig. 4) but only with a slower convergence rate.
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Fig. 3. Warm-up Phase on i.i.d. CI-
FAR10
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Fig. 4. Searching Phase on i.i.d. CI-
FAR10
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Fig. 5. Updating α with θ fixed
.
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Fig. 6. Searching Phase on Non-i.i.d.
CIFAR10

The extra searching cost compared to the i.i.d. dataset can be
considered as the price paid for non-i.i.d. distributions.

B. Accuracy

We use the testing accuracy in the evaluation phase (P4) to
gauge the performance of the searched model. We report our
searching results on i.i.d. CIFAR10 dataset in Table II where
the model is trained in a centralized way at P3. For a clear
comparison, we compare the accuracy with other centralized
NAS methods such as DARTS and ENAS in Table II. Com-
pared with centralized NAS methods DARTS (gradient-based)
and ENAS (RL-based), our algorithm finds models achieving
state-of-the-art accuracy performance within the same search
space with DARTS, which shows our algorithm can effectively
find models with good performance. We also evaluate the
accuracy where the searched model is trained distributedly at
P3 in Table III along with pre-defined models (FedAvg) and
decentralized NAS (EvoFedNAS). Pre-defined models perform
the worst. Our algorithm has approximately the same accuracy
as EvoFedNAS but EvoFedNAS has a much larger model
size than our results. To sum up, the searching capability of
our method surpasses previous decentralized NAS methods,
and generally achieves the performance of the state-of-the-art
centralized NAS. When the searched models are trained in
an FL setting, the ones searched by our algorithm also enjoy
superior performance than previous works [16], [20].

On non-i.i.d. datasets, we train the model distributedly on
the same non-i.i.d. dataset using federated learning at P3. As
shown in Table IV, our algorithm achieves higher evaluation

TABLE II
CENTRALIZED EVALUATION ACCURACIES OF SEARCHED MODELS ON

CIFAR10

Method Error(%) Param(M) Strategy FL NAS

RL-based Federated Model Search
DARTS (1st order) [7] 3.00 3.3 grad X

DARTS (2nd order) 2.81 3.3 grad X
ENAS [13] 2.89 4.6 RL X

Ours 2.62 3.6 RL X X

Delay-Compensated Federated Model Search
use (70% staleness) 2.84 3.2 RL X X

throw (70% staleness) 3.00 4.0 RL X X
Ours(70% staleness) 2.72 3.2 RL X X
Ours (10% staleness) 2.59 2.7 RL X X

TABLE III
FEDERATED EVALUATION ACCURACIES OF SEARCHED MODELS ON

CIFAR10

Method Error(%) Param(M) Strategy FL NAS

RL-based Federated Model Search
FedAvg [20] 15.00 - hand X

EvoFedNAS(big) [16] 13.32 - evol X X
EvoFedNAS(small) 16.64 - evol X X

Ours 13.36 3.6 RL X X

Delay-Compensated Federated Model Search
Ours (10% staleness) 13.25 2.7 RL X X

accuracy than previous works [16], [17], [20], yet with much
smaller model sizes. It can be concluded that our algorithm
can find a well-performed model under the non-i.i.d. data
distribution of the participants.

C. Efficiency

As mentioned before, the complexity of our algorithm at
the local participant is proportional to 1

N of the super-net,
which is N times more efficient than previous works such as
FedNAS [17]. Empirically, the super-net in our experiment is
1.93MB, while our sub-model is 0.27MB on average, which
is sufficiently light for deployment on mobile devices.

To verify the efficiency, we record the training time at the
searching phase. We deploy our algorithm in a distributed
setting, using a GTX 1080 Ti GPU as the server. We use GTX
1080 Ti GPUs and NVIDIA Jetson TX2 (TX2) as participants
respectively, and the latter is a common edge device powered
by GPU. We compared the search time in Table V. It only
takes less than 2.5 hours on 1080 Ti and less than 10 hours
on IoT devices, supporting that our algorithm is lightweight
and can potentially be deployed on real-world IoT devices.

Adaptive Transmission. We choose 4G/LTE Bandwidth
Logs [30] to simulate our network conditions. The 4G/LTE
Bandwidth Logs collect real-world bandwidth measurements
in 4G networks. The types of settings include on-foot, bicycle,
train, bus, tram, and car, where mobile devices and IoT
devices are most commonly used. We use the bandwidth in
these logs as our participants’ transmission conditions and
the total number of participants is 10. For each round of
the searching phase, we estimate the maximal and average



TABLE IV
FEDERATED EVALUATION ACCURACIES OF SEARCHED MODELS ON

NON-I.I.D. DATASETS

Method Error(%) Param(M) Strategy NAS

Non-i.i.d. CIFAR10
FedAvg * [20] 22.40 58.2 hand
FedNAS [17] 18.76 4.2 grad X

EvoFedNAS(big) [16] 18.73 - evol X
EvoFedNAS(small) 21.06 - evol X

Ours (non i.i.d.) 18.56 3.9 RL X

Non-i.i.d. SVHN
FedAvg * 10.78 58.2 hand

Ours (non i.i.d.) 10.23 2.5 RL X

* Using ResNet152 [29] as the base model.

TABLE V
SEARCH TIME ON CIFAR10

Method Search Time (hours) Sub-net Size (M)

FedNAS * [17] <5 1.93 1

EvoFedNAS [16] 16.1 4.23 1

Ours (1080Ti) <2.5 0.27
Ours (TX2) <10 0.27

* FedNAS [17] use16 RTX2080Ti GPUs as participants, and
1 RTX2080Ti as the server.

1 The average size of sub-nets.

latencies of sending sub-models over all participants. Besides
our adaptive approach, we implement two other methods for
comparison: sending the average-sized models and randomly
sending models. In particular, sending sub-models of the same
size is adopted by previous works [16]–[18]. Fig. 7 shows
our approach is superior to baselines in terms of the maximal
latency. The average latency has the same trend and thus is
omitted for saving space.

Delay-Compensation. Due to the complicated environmen-
tal factors and the mobility of participants, staleness persists
in the real-world federated learning settings. To verify our
delay-compensation scheme on federated model search, we
design data distributions with staleness to simulate the real-
world scenarios. 0% staleness means the server adopts hard
synchronization and tolerates no staleness. 100% staleness
means all data are out of date.

The first data distribution represents the case with severe
staleness. We have 30% up-to-date data, 40% and 20% of
the data respectively stale for 1 and 2 rounds, and the rest
data exceeds the staleness threshold. We compare our delay-
compensated scheme with two other common techniques —
directly using stale data (use) and throwing it away (throw), as
well as our same method without any staleness. The moving-
average of the training accuracy in the searching phase is given
in Fig. 8. Note that all the methods in Fig. 8 share the same
warmed-up super-net, and hence the training curves have the
same starting point as shown by the subgraph. The throwing-
away strategy throws away a large proportion of updates on
training data and hence yields the least accurate model among
all. The algorithm is superior when directly using stale data,
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Fig. 7. Maximal transmission latency when sending a sub-net from the cloud
to a participant in various network environments. “Bus+Car” means half of
the participants are on buses and the other half are in cars.

Fig. 8. Searching-Phase Performance on Stale Data (CIFAR10)

but is still inferior to our delay-compensated scheme. It is clear
that our delay-compensated federated RL alleviates staleness
and has the best searching performance among all, which is
very close to the staleness-free case.

The second data distribution represents the case with slight
staleness. We have 90% of data up-to-date, 9% and 0.9% of
the data respectively stale for 1 and 2 rounds, while the rest
data exceeds the staleness threshold. In this setting, our delay-
compensated scheme brings limited searching performance
enhancement but surprisingly finds the model with 2.59%
testing error and 2.7MB size, which even outperforms the
2.62% error rate without any staleness. We think it may be
because the introduction of delay-compensation may improve
the generalization capability of the searched model.

The testing accuracy on the searched model in the evaluation
phase is given in the second section of Table II and III.
It is obvious that with delay-compensation, federated RL
is still able to find highly accurate and small-sized models
outperforming previous works with less time.

Not only is our algorithm efficient at the searching phase,
but its searched models have better convergence performance
overall. For straightforward illustration, we show the average
training and validation accuracies of the participants versus
the communication rounds over non-i.i.d. data at P3 where
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Fig. 9. Average Accuracy v.s. Rounds on Non-i.i.d
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Fig. 10. Average Accuracy v.s. Rounds on Non-i.i.d
SVHN
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Fig. 11. Average Accuracy v.s. Rounds when Trans-
ferring models to Non-i.i.d. CIFAR100
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Fig. 12. Searching-Phase Performance v.s.
Number of Participants

TABLE VI
RESULTS UNDER

DIFFERENT NUMBERS OF
PARTICIPANTS

# Part Err(%) Para(M)

10 2.62 3.6
20 2.88 2.9
50 2.67 3.8

TABLE VII
RESULTS OF TRANSFERRING FROM

I.I.D. CIFAR10 TO I.I.D.
CIFAR100

Method Acc(%) Para(M)

DARTS 82.99 3.4
FedNAS 80.28 4.2

Ours 83.31 3.6

TABLE VIII
RESULTS OF TRANSFERRING FROM
NON-I.I.D. CIFAR10 TO NON-I.I.D.

CIFAR100

Method Acc(%) Para(M)

FedAvg 52.57 58.2
FedNAS 36.01 4.2

Ours 54.63 3.9

the model is trained in a federated learning fashion. The
results are shown in Fig. 9, Fig. 10, and Fig. 11. We compare
our searched models with a pre-defined model (ResNet152)
and the model searched by FedNAS. Our searched models
converge within fewer communication rounds. In the case
where we transfer searched models from CIFAR10 to non-
i.i.d. CIFAR100, although our training accuracy is lower than
the pre-defined model, our validation accuracy is higher, as the
pre-defined model merely overfits the non-i.i.d. dataset. The
set of results deliver convincing evidence that our searched
models fit non-i.i.d. data better, with higher accuracies and
faster convergence.

D. Number of Participants

We study the impact of the number of participants on our
proposed algorithm. We choose 10, 20, and 50 participants,
and equally, divide the CIFAR10 datasets among them. The
moving average of the training accuracy in the searching phase
is reported in Fig. 12. Since all participants perform the model
search at the same time, the time cost for each round of updates
is approximately the same, despite the number of participants.

From Fig. 12, it is easy to conclude that as the number of
participants increase, the convergence speeds up. And the final
searching-phase accuracy is promoted with more participants.
As the error bars of each curve indicates, the fluctuation in
participants’ model accuracy decreases when there are more
participants. We also present the best testing accuracies of the

searched models with different numbers of FL participants in
Table VI. It shows that the searched models achieve almost
the same accuracy performance regardless of the number of
participants, and though each local dataset is smaller with
more participants. Jointly considering the searching-phase
convergence rate, our algorithm performs well in large-scale
settings.

E. Transferrability

Since the searching-phase is prolonged, it is often a choice
to transfer the model learned on one dataset to another [7]–[9],
[31], [32]. We study the generalization capability of the model
searched by our RL-based algorithm by transferring the model
structure searched on the i.i.d./non-i.i.d. CIFAR10 dataset to
the i.i.d./non-i.i.d. CIFAR100 dataset. As shown in Table VII
and Table VIII, our method provides satisfying transferability
with competitive accuracies against other methods. Hence it is
possible to perform our search algorithm over a small dataset
and later transfer the model to a larger dataset.

VII. CONCLUSION

Since a pre-determined DNN model often fails to adapt to
dynamic, unknown local data distribution under the FL frame-
work, we propose a reinforcement learning based federated
model search to automatically search for a best-fit model.
Our algorithm adaptively distributes the training tasks of sub-
models to participants, which is highly efficient in communica-



tion and computation. We also propose a soft synchronization
scheme, in which we design a delay-compensated optimizer
based on the second-order Taylor expansion to alleviate the
staleness. Supported by abundant experiments, our algorithm
outperforms the state-of-the-art methods in terms of efficiency
and model accuracy, particularly on non-i.i.i.d. data.
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